Asymptotic analysis of model selection criteria for general hidden Markov models
نویسندگان
چکیده
The paper obtains analytical results for the asymptotic properties of Model Selection Criteria – widely used in practice a general family hidden Markov models (HMMs), thereby substantially extending related theory beyond typical ‘i.i.d.-like’ model structures and filling an important gap relevant literature. In particular, we look at Bayesian Akaike Information (BIC AIC) evidence. setting nested classes models, prove that BIC evidence are strongly consistent HMMs (under regularity conditions), whereas AIC is not weakly consistent. Numerical experiments support our theoretical results.
منابع مشابه
Asymptotic smoothing errors for hidden Markov models
In this paper, the asymptotic smoothing error for hidden Markov models (HMMs) is investigated using hypothesis testing ideas. A family of HMMs is studied parametrised by a positive constant , which is a measure of the frequency of change. Thus, when 0, the HMM becomes increasingly slower moving. We show that the smoothing error is ( ). These theoretical predictions are confirmed by a series of ...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولFactorized Asymptotic Bayesian Hidden Markov Models
This paper addresses the issue of model selection for hidden Markov models (HMMs). We generalize factorized asymptotic Bayesian inference (FAB), which has been recently developed for model selection on independent hidden variables (i.e., mixture models), for time-dependent hidden variables. As with FAB in mixture models, FAB for HMMs is derived as an iterative lower bound maximization algorithm...
متن کاملAsymptotic MAP criteria for model selection
The two most popular model selection rules in the signal processing literature have been the Akaike’s criterion AIC and the Rissanen’s principle of minimum description length MDL. These rules are similar in form in that they both consist of data and penalty terms. Their data terms are identical, but the penalties are different, the MDL being more stringent toward overparameterization. The AIC p...
متن کاملHidden Markov Model for Stock Selection
The hidden Markov model (HMM) is typically used to predict the hidden regimes of observation data. Therefore, this model finds applications in many different areas, such as speech recognition systems, computational molecular biology and financial market predictions. In this paper, we use HMM for stock selection. We first use HMM to make monthly regime predictions for the four macroeconomic vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2021
ISSN: ['1879-209X', '0304-4149']
DOI: https://doi.org/10.1016/j.spa.2020.10.006